
What Attracts Contributors to OSS Projects?

Wenke Yang1, Yuan Wei2, Fu Yin3, and Zhengyi Yang1,a,*
1School of Computer Science and Engineering, UNSW, Sydney, Australia

2Realtek Semiconductor Corp., Singapore
3Xilinx, Inc, Cambridge, United Kingdom

a zyang@cse.unsw.edu.au

*corresponding author

Keywords: open source, Travistorrent, Pearson correlation, feature selection, data analysis,
machine learning

Abstract: Open source software (OSS) has played an essential role in this era. Many companies
and researches rely on open source software. However, not all open source projects attract enough
developers and get improved regularly. In this paper, to find out factors on contributing to OSS's;
we analysed projects with large team size from the TravisTorrent dataset. Machine learning based
feature selection and Pearson's correlation analysis are applied to the data and the results show that
test density and assert density have strong negative impacts on attracting new contributors. To
attract more members in OSS, we suggest that one may pay more attention on production files other
than focusing too much on tests. Future researchers may also apply the methodologies used in this
paper to explore other factors and/or apply it on different datasets.

1. Introduction
In the last decade, open source software (OSS) has played an essential role in both industry and

research. A survey[1] conducted in 2015 revealed that about 78% of companies run on open source.
The reason why they use OSS relies on three main factors according to [2]; the dominance of OSS's
in their product category, investment amounts on OSS's and the revolutionised working structure.

The choice on OSS's makes it important to attract developers to the project since it solely
depends on developers' potential contribution. Therefore, the reasons behind the attraction should
be investigated and then, they will then be used to popularise the project and increase the success
rate.

While there have been many survey-based studies which looked at the motivations of open-
source contributors in general[3], as well as the processes through which new developers join open
source projects[4], there are fewer studies published on why developers join or leave a particular
project[5, 6], and these tend to be based on psychometric analysis of textual data such as comments
close to joining or leaving times rather than directly correlating quantifiable events to joins and
leaves.

The question of why developers join OSS projects is widely debated and has received much
attention in research. However, much of this attention has been focused on why developers
contribute to open source in general, forgoing direct monetary rewards, and not why they join or
leave particular software projects in terms of the events rather than psychological characterizations.
For example, in Understanding Sustained Participation in Open Source Software Projects the
authors quote a contributor to the phpMyAdmin project:

"For me it started when I noticed the phpMyAdmin project was `clinically dead': no new
release . . . for the last 18 months, no feedback about submitted patches, etc. [phpMyAdmin could]
take away all the pain of creating and maintaining a MySQL database"

The authors characterized this reason as “software use value”, being more focused on what the
developer said was his motivation (i.e. taking away the pain of maintaining a MySQL database),

2019 8th International Conference on Advanced Materials and Computer Science (ICAMCS 2019)

Published by CSP © 2019 the Authors 321

rather than on the metrics that were objectively measurable (i.e. no release for last 18 months). This
study, in contrast to most of the previous studies, focuses on deducing developer motivations from
objectively measurable metrics rather than relying on analysis of developer comments.

It has been found that the main drivers of motivation are enjoyment-based, with intellectual
stimulation being much more important than extrinsic rewards such as career advancement[3]. By
gaining an understanding of why developers join or leave open source projects, we can obtain
insights into the causes of the success of open source projects, and potentially use this information
in order to directly influence the success outcome of open source software projects, and possibly
software projects in general.

The rest of the paper is organized as follows. Section 2 introduces the necessary background.
Section 3 explains the approaches we used to conduct the analysis. The results are shown in Section
4. Finally, section 5 concludes the paper with some directions for the future works.

2. Background
2.1. TravisTorrent

The dataset used in the analysis is from TravisTorrent[7]. The GitHub repositories are used for
forming TravisTorrent and is obtained from 17,313,330 OSS active projects. Non-popular, non-fork
and non-toy projects are filtered and excluded for better analysis. Travis users are chosen, and only
Java and Ruby language-based projects are included. The dataset used for this project is
‘travistorrent_27_10_2016’.

Each row in the dataset represents unique builds done in the Travis. These rows encapsulate
three different data sources; git repository of the specific project, GitHub data of the project and
data from Travis API. However, the value in the ‘gh_team_size’ field is the number of contributors
who have made a commit within the last 3 months. Therefore, a new contributor joining the team
will be instantly reflected in an increase in ‘gh_team_size’, but a contributor leaving the team will
only cause ‘gh_team_size’ to change 3 months after he has stopped contributing. In order to find out
the team size at any given moment and to pinpoint the exact time at which contributors join and
leave (since the number of contributors joining and leaving could cancel each other out by
coincidence), it is necessary to know the author of each commit so that a proper count of joins and
leaves can be obtained.

2.2. Related Work
Although some research has been done to analyse the factors that affect the team size in OSS's,

there are still different aspects to analyse the correlation between the team size and the unanalysed
aspects. Moreover, researchers tried to find the reasons behind the motivations to participate in OSS,
there is not a single research based on Travis CI data.

For the same analysis with this paper but with different data and different aspects; first, the
intrinsic and extrinsic reasons have been analysed by Wang, He and Chen and they have found out
that intrinsic motivations are leading for the individual contributors whereas extrinsic motivations
are the reasons for firms participating in OSS[8]. In addition, an analysis on GitHub for
understanding the correlation between popularity of OSS projects and some specific factors have
been made. The results showed that projects owned by organisations are more likely to attract
developers compared to the ones owned by individuals. The same paper also considered the first
release date of the software and revealed the correlation between the increase of number of stars
after the first release[9].

In addition, the effect of social factors has been investigated for contributions on GitHub
repositories. The results indicate that social factors like the social relationship between committer
and pull requester are highly correlated[10]. Moreover, another analysis revealed the main
functionalities and benefits of GitHub does not affect increasing the factor of attracting software
developers for contributing[11].

322

3. Approach
We have studied the TravisTorrent dataset to find out factors motivates people to join a team.

However, as mentioned in Section 2, the team size in the dataset does not actually reflect the actual
team size precisely. Therefore, we fetched the author information for all commits used from GitHub,
to identify those commits made by new developers. We marked the author for a given commit as
‘new_joiner’ if he/she never made any commits within the last three months and insert this binary
data into the original dataset as a new column named ‘is_new_joiner’.

We will analyse the following seven different projects with highest team size and have sufficient
test information on Travis from the dataset: rails/rails, rapid7/metasploit-framework, fog/fog,
geoserver/geoserver, ManageIQ/manageiq, cloudfoundry/cloud_controller_ng, and
mitchellh/vagrant. A brief description of data in these projects is given in TABLE 1. It is worth to
note that a single commit may trigger multiple builds, hence, we merged duplicated commits and
take their mean for all numerical values. Moreover, we need to shift the ‘is_new_joiner’ and map it
to its previous commits since people joining the team is a future effect of a certain commit. Thus,
we could correctly predict if new contributor would join the project in the future.

Table 1 Brief description of the data.

Project
Name

fog geoserver manageiq metasploit rails clound_controller_ng vagrant

Number of
Records

8448 2274 13350 53168 430948 9712 2647

Number of
Unique

Commits

1139 954 1723 1866 2753 2417 2565

Rate of
Commits
Made by

New
Joiner(%)

36.0 13.0 4.5 9.7 15.8 17.7 17.9

Max Team
Size

89 53 59 65 198 69 56

Min Team
Size

7 19 39 31 68 29 3

Mean Team
Size

59.4 40.2 51.4 45.4 142 47.5 41.2

Team Size
Standard
Deviation

22.8 8.91 5.66 9.35 37.1 7.74 14.3

The prediction was considered as a binary classification task since ‘is_new_joiner’ is a binary
value: for a certain commit, there either is a new contributor or not. As the result, we then applied
feature selection and correlation analysis to rank the importance of different features. These
techniques are very commonly used in machine learning and statistics to simplify models, shorter
training time and reduce over-fitting. From the human perspective, the importance ranking can give
OSS teams some suggestions of the aspects they can prioritise when trying to attract more
contributors.

Features we do not want to encounter and all low-variance features are first removed before
inputting to feature selectors. The low-variance threshold is set to zero in our analysis that filtered
out cumulus with all values are identical. Pre-processed data is then fed into the following classifier
to rank all features:

1) Extremely randomized trees classifier: Extremely randomized trees[12], denoted as “ERT” in
this paper, use ensembles of decision trees which can compute the relative importance of each
attribute. They are among the most popular machine learning methods for feature ranking thanks to

323

their good accuracy, robustness and fast training speed.
2) Logistic regression classifier: Logistic regression, denoted as “LR” in this paper, is a common

method for binary classification. It measures the relationship between the categorical dependent
variable and independent variables by estimating probabilities using a logistic function, which is the
cumulative logistic distribution. The coefficient of each independent variable indicates the impact,
on whether will new contributor join, of the corresponding feature.

Furthermore, we employ recursive feature elimination (RFE) to rank features. RFE recursively
considering smaller and smaller sets of features until the given number of features are selected. In
order to rank all features properly, we make recursive selections with a step of 1 until the best
feature is selected. We use Python as our tool of analysis with the help of Pandas and Scikit-learn
libraries. Extremely randomized trees and logistic regression are both used as the estimators in the
recursive feature elimination process, and the number of trees in the forest is set to 250 for the
extremely randomized trees.

After obtained all these features, for each selection method, the overall ranking for each feature
was calculated based on its ranking in each project. Similarly, ranks for each feature in different
selection method will be summed together to get final top ranked features.

The Pearson Correlation Coefficient (PCC) will then be computed between there top features
and the total number of joiners within 3 months after each commit. This will review if the value of a
feature has a linear impact on the number of new joiners in long term and discover whether the
impact is positive or negative if it exists.

4. Results
We first performed machine learning based feature ranking as described in Section 3 to pick up

important factors that affect new joiners. The ranking varies from projects to projects; however, we
produce a combined ranking according to the sum of rank in each project. A summary of the top 20
ranked factors using different classifiers is presented in TABLE 2. The detailed description of listed
features can be found in [7].

Table 2 Feature ranking.
Project Name ERT ERT-RFE LR LR-RFE Overall

gh_test_cases_per_kloc 4 6 17 3 1
gh_test_lines_per_kloc 6 5 2 17 1

gh_src_files 15 12 6 4 3
gh_files_modified 14 13 4 7 4

gh_asserts_cases_per_kloc 7 8 11 13 5
tr_testduration 3 3 14 20 6
tr_setup_time 12 16 10 2 6

gh_commits_on_files_touched 9 7 5 22 8
gh_description_complexity 8 10 1 25 9

gh_team_size 13 14 3 16 10
tr_duration 1 1 16 30 11

gh_src_churn 11 9 9 26 12
tr_tests_skipped 19 18 8 10 12

gh_num_commit_comments 23 23 13 1 14
tr_tests_run 10 11 12 28 15

gh_sloc 5 4 16 29 16
gh_test_churn 16 15 7 27 17
gh_other_files 21 21 18 6 18

gh_num_issue_comments 17 19 22 8 18
tr_ci_latency 2 2 32 32 20

We can notice that the top 5 ranked factors in the overall ranking are:
1) gh_test_cases_per_kloc - Test density. Number of test cases per 1,000 executable production

source lines of code.
324

2) gh_test_lines_per_kloc - Test density. Number of lines in test cases per 1,000 executable
production source lines of code.

3) gh_src_files - Number of production files in the new commits in this build.
4) gh_asserts_cases_per_kloc - Assert density. Number of assertions per 1,000 executable

production source lines of code.
5) gh_files_modified - Number of files modified by the new commits in this build.
PCC for these features was then computed to verify our findings and further investigate the

relationship. Figure 1 shows the PCC for these features for selected projects. As we can see, test
density and assert density have a strong negative correlation with the total number of joiners within
3 months in almost all selected projects. In our PCC calculation, in addition, p-values for test
density and assert density are extremely close to 0 which further state the significance of our result.

Figure 1 The correlation of factors with joiner rate.

On the other hand, our top features also contain gh_src_files and gh_files_modified, which shows
the number of production files in new commits and number of files modified by new commits. No
obvious linear relations have been found in these two features. Intuitively, the strong test negative
correlation for test and asserts density may mean reducing the number of test files could attract new
developers. However, experiences show test cases normally won't get deleted once they've been
created, hence, we believe the reduction of test density actually reflects the increment of production
files. Based on all these results, we believe the more active in production files a team is, the more
developers it could attract.

5. Conclusion
Although researchers have investigated the factors that affect the team size of OSS, there are, to

the best of our knowledge, no research based on the TravisTorrent data, a comprehensive dataset
with continuous integration testing integrated. In addition, those approaches are considering
intuition-based effects. Focusing on the TravisTorrent dataset with additional data extracted from
GitHub, we applied traditional machine learning technique, feature selection, to explore the possible
importance features, for attracting new developers. We also presented correlation analysis between
5 top factors with the change of team size, among a variety of factors presented in the machine
learning approach.

The results suggest two possible factors that mainly attracts developers from three features and
focuses on one field, test. PCC analysis shows strong negative correlation between test density and
asserts density. As a conclusion, we suggest OSS teams focus on production files instead of tests.
Besides, OSS teams may apply the methodologies proposed in this paper to discover other
important features for their projects.

However, there are limitations for this work. All projects analysed are written in either Ruby or
Java, therefore, the result may be biased. In addition, only 7 selected projects on TravisTorrent are

325

explored. In our future works, analysis will be performed on more projects and enlarged datasets to
find out the similarity and diversity among projects. Moreover, we will possibly apply more
complex models to catch non-linear relations and other influential patterns that related to the
number of new joiners in OSS. Finally, our results can be evaluated though time by those
developers who will adopt our suggestion.

References
[1] The ninth annual future of open source survey. [Online]. Available:
https://www.blackducksoftware.com/2015-future-of-open-source.
[2] J. Lerner and J. Tirole, “Some simple economics of open source,” The journal of industrial
economics, vol.50, no. 2, pp. 197–234, 2002.
[3] J. Feller, B. Fitzgerald, S. A. Hissam, and K. R. huff, “Why hackers do what they do:
Understanding motivation and effort in free/open source software projects,” in Perspectives on Free
and Open Source Software. MIT Press, 2007, pp. 3–21.
[4] I. Herraiz, G. Robles, J. J. Amor, T. Romera, andJ. M. Gonz ́alez Barahona, “The processes of
joining in global distributed software projects,” in Proceedings of the 2006 International Workshop
on Global Software Development for the Practitioner, ser. GSD ’06, Shanghai, China: ACM, 2006,
pp. 27–33.
[5] P. C. Rigby and A. E. Hassan, “What can oss mailing lists tell us? a preliminary psychometric
text analysis of the apache developer mailing list,” in Fourth International Workshop on Mining
Software Repositories (MSR’07: ICSE Workshops 2007), 2007, pp. 23.
[6] Y. Fang and D. Neufeld, “Understanding sustained participation in open source software
projects,” J. Manage. Inf. Syst., vol. 25, no. 4, pp. 9–50, Apr. 2009.
[7] M. Beller, G. Gousios, and A. Zaidman, “Travistorrent: Synthesizing travis ci and github for
full-stack research on continuous integration,” in Proceedings of the 14th working conference on
mining software repositories, 2017.
[8] F.-R. Wang, D. He, and J. Chen, “Motivations of individuals and firms participating in open
source com-munity,” in2005 International Conference on Machine Learning and Cybernetics, vol. 1,
2005, pp. 309–314.
[9] H. Borges, A. Hora, and M. T. Valente, “Understanding the factors that impact the popularity of
github repositories,” ArXiv preprint arXiv:1606.04984, 2016.
[10] J. Tsay, L. Dabbish, and J. Herbsleb, “Influence of social and technical factors for evaluating
contribution in github,” in Proceedings of the 36th international conference on Software
engineering, ACM, 2014, pp. 356–366.
[11] J. C. Izquierdo, V. Cosentino, and J. Cabot, “Attracting contributions to your github project,
“The Journal of Object Technology, 2015.
[12] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees, “Machine Learning, vol.
63, no. 1, pp. 3–42, 2006.
[13] K. Boudreau, “Let a thousand flowers bloom? an early look at large numbers of software app
developers and patterns of innovation,” Organization Science, 2012.
[14] J. Roberts, I. Hann, and S. Slaughter, “Understanding the motivations, participation, and
performance of opensource software developers: A longitudinal study of the apache projects,”
Management science, 2006.
[15] Y. Ye and K. Kishida, “Toward an understanding of the motivation open source software
developers,” pp. 419–429, 2003

326

	1. Introduction
	2. Background
	2.1. TravisTorrent
	2.2. Related Work
	3. Approach
	4. Results
	5. Conclusion
	References

